Implicitly Defined Substructure Fingerprints for Support Vector Machines

نویسندگان

  • Nikolas H. Fechner
  • Georg Hinselmann
  • Andreas Zell
چکیده

For the calculation of the Tanimoto similarity of two molecules, only the patterns that occur in at least one of them are needed. These can be obtained on-the-fly by a generation method. : The substructure set is generated for each of the molecules, and each of the substructures is checked, if it is also contained in the other set. For the Tanimoto Coefficient it is sufficient to know the cardinality of each of the sets and the cardinality of the intersection. Implicit Substructure Fingerprint Kernels

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

Lead Hopping Using SVM and 3D Pharmacophore Fingerprints

The combination of 3D pharmacophore fingerprints and the support vector machine classification algorithm has been used to generate robust models that are able to classify compounds as active or inactive in a number of G-protein-coupled receptor assays. The models have been tested against progressively more challenging validation sets where steps are taken to ensure that compounds in the validat...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006